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SL(2, C) Gravitational Conserved Current and 
Noether's Theorem 
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Noether's theorem is applied to Hilbert's Lagrangian written as a functional of 
spinorial variables. The associated SL(2, C) conserved current is obtained, and 
its expression for the Tolman metric is given explicitly. 

1~ I N T R O D U C T I O N  

It is well known that Hilbert 's Lagrangian density 

~gu = ( - g  ) ~/2 R - 2K~M (1) 

when considered as a functional of  the metric and the affine connections, 
leads through a Palatini-type variational principle to the Einstein field 
equations (Palatini, 1919; Misner et al,, 1973) 

' KT.~, (2) R ~  -sg~,~R = 

The field equations are obtained by varying the components of  the metric, 
whereas the variation of the affine connections leads to its definition in 
terms of the geometrical metric, 

1 ~ k  F ~ = ~ g  ( g ~ , ~ + g ~ , ~  g~,~) (3) 

It was shown by Carmeli  and Kaye (Carmeli and Kaye, 1978; Carmeli, 
1982) that an $L(2,  C)  Palatini variational formalism can be performed on 
Hilbert 's Lagrangian written as a functional of  spinorial variables, 

~LPn = ~L~o(cr~b,, Baa b, B,,~a b) - 2K~9?M (4) 

(Greek letters denote, as usual, tensor indices with values 0 to 3. Lower 
case Latin indices denote dyad components of  spinors in a local spinor 
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frame and take the values 0, 1. Primed indices denote complex conjugation 
of spinors.) tr~b, and B,a b are 2 • 2 complex matrices the elements of which 
are 4-vectors. The first, O'ab,,~' is defined by the requirement that (Penrose, 
1960) 1960) 

Or~ uab' __ ~p,u ~b ' , ,  - ~ ( 5 )  

where g"" is the geometrical metric. The second, B~, b, constitutes the vector 
potential in the SL(2, C) gauge theory of gravitation (Carmeli, 1982). It is 
traceless, that is, it belongs to the internal space of the SL(2, C) group. 

The explicit form of the gravitational part of this Lagrangian density is 

'~PO = --  2 ( - - g  ) l /2  cr"~'ab F .~ ,ba  (6) 

where 

t~ ~bc, (7) O-I~Uab = O'ac, O" 

(The square brackets denote antisymmetrization of the enclosed indices.) 
Hence o-"Va b is a metric skew-symmetric spinorial tensor. It is easily seen 
from its definition that it belongs to the internal space of the SL(2, C) 
group, namely, its components are 2 x2 traceless complex matrices. The 
field variable F,~a b, appearing in equation (6), is the gauge gravitational 
field tensor given by the elements of the matrix 

( 8 )  

It is worthwhile noticing that although equations (1) and (4) express 
the same Lagrangian, they are structured differently. While the former is 
obtained from the product of two symmetric tensors, the latter is obtained 
from two antisymmetric tensors. 

Varying with respect to the components of the O'a~c,, one obtains the 
Einstein gravitational field equations in dyad notation. In turn, the Lagrange 
equations which result from the variation with respect to the matrix elements 
of the vector potential, B.a b, give the definition of this potential in terms 
of the o'~c, along with their directional derivatives (Carmeli and Kaye, 1978). 

In this paper we apply Noether's theorem to this Lagrangian density 
in order to get a metric conserved current resulting from the SL(2, C) 
symmetry of the gravitational field. In Section 2 we briefly review the 
conservation laws related to the SL(2, C) symmetry that arise from a 
quadratic Lagrangian density. In Section 3 we apply Noether's theorem to 
the Carmeli-Kaye Lagrangian and obtain a conserved current. An applica- 
tion is subsequently made in Section 4 where the conserved current is 
calculated explicitly for the Tolman metric. The last section is devoted to 
the concluding remarks. 
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2. SL(2, C) GRAVITATIONAL CONSERVED CURRENTS 
OBTAINED FROM QUADRATIC LAGRANGIAN 

The well-known decomposition of the Riemann curvature tensor to its 
three irreducible tensorial components induces a division of the gauge field 
(Carmeli, 1982) 

F ' ~  b = FWt'~ab + FS'". b + F r ~ a b  = F W ~  b + FR'~ b (9) 

Carmeli (1976) demonstrated the existence of a conserved vector current 
obtained from this division, which shows a remarkable similarity to Yang- 
Mill's (1954) current. In matrix notation it is given by 

where 

J~ = 2-~ ~ , - . . , ~  - [Be,  F~,]) (11) 

Malin (1977), in turn, showed the existence of a conserved current that is 
given by 

jot 1 c ~ v l ~  1 ,,m,~r~ F.~] (12) 

In addition to the above-mentioned induced division, the gauge field 
tensor decomposes into two tensors which are, respectively, the rotor and 
the commutator of the gauge potential (Nissani, 1983, 1984a): 

L,.=B~.~-B~.~. (13) 

K~, = [B~, B~] (14) 

F ~ = L ~ . + K ~  (15) 

From the tensor L~,~ we obtain a tensodal continuity equation (Nissani, 
1983, 1984a), 

* ~  --! ~ o t ~ t  , , - 2 e  ~ o , ~ = 0  (16) 

Applying Noether's theorem to the quadratic Lagrangian density of 
Carmeli (1976) for the SL(2,C) gauge theory of gravitation we obtain, from 
the SL(2,C) symmetry, the following conserved current (Carmeli and 
Nissani, 1982): 

1 a[31-tVT [1~' J~ =~e . r ~  ~o g),~ (17) 

where g is an arbitrary traceless 2 • 2 complex matrix. If  we now take 
g = g~ (i = 1, 2, 3) as a global basis of the internal space of the symmetry 
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group, that is, g,u =0,  we obtain from equation (17) 

j~ = Tr(J~&) (18) 

where J "  is Malin's conserved current. 
From the decompositions (9) and (15) of  the gauge field we obtain 

two decompositions of this current to the conserved currents (Nissani, 1983) 

j~ = Tr(J  W~g~) + Tr(jR~&) (19) 

j~ =j~+j~ (20) 

where j w .  is Carmeli's current, jR .  is a conserved current related to the 
energy-momentum tensor (Nissani, 1983, 1984a), 

J~ = Tr(�89 ~ t3  L ~  g),~ (21) 

and 

J~: = Tr(�89 K~o g),~ = T r ( J ' g )  + Tr( �89176 K~o g,~) (22) 

Furthermore, one can show (Nissani, 1984b) that Carmeli's and 
Malin's currents belong to a set of six conserved currents of  the form 

j x .  = (_g)l/2fix~ (X = W, S, T) 
j ~  = ( _ ~ 1 / 2 , < ~  (23) 

\ Ol dt ;1) 

Here, use is made of the notation 

fx .~= FX.~ab g,ba (24) 

where gib a (i = 1, 2, 3) is a local basis of the internal space of the SL(2,C) 
group. 

3. M E T R I C  C O N S E R V E D  C U R R E N T  O B T A I N E D  F R O M  
H I L B E R T ' S  L A G R A N G I A N  

In the previous section we reviewed the conserved currents related to 
the SL(2,C) symmetry of  the gravitational field through a quadratic 
Lagrangian density. In this section we apply Noether's theorem to Hilbert's 
Lagrangian density, written as a functional of  spinorial variables, equations 
(4) and (6), to obtain a conserved current, which can be called a metric 
conserved current. 

Using Anderson's notation (Anderson, 1967) the Noether theorem can 
be stated, in our case, as follows: 

(i) Let G be a Lie and symmetry group of a theory which is sustained 
by a Lagrangian density ~ ;  
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(ii) The Lagrangian density depends only on the variables YA and 
their first derivatives YA,~, that is, l t  -- l t (  YA, YA,~); 

(iii) The Lagrangian density is invariant under the group transforma- 
tions ; and 

(iv) The group does not operate upon the coordinates (internal group) ; 
then Noether 's theorem acquires the very simple form 

A 

where eWgA = 6gYA are the variations due to the infinitesimal element of 
the group, (I + eg). Therefore, the expression 

Olt 
~A ~ WgA=J~ (26) 

defines a conserved current. If the symmetry group possesses n infinitesimal 
generators gi (i -- 1 , . . . ,  n), one obtains n conserved quantities, 

Olt 
J: = ~A ~ wg'A (27) 

Since the B~ab,, are the only quantities with derivatives that appear in 
lto, and assuming that the matter Lagrangian is independent of spinorial 
derivative variables, we get 

1 a l t  o t~g~Bva b (28) 
JU~ 40Bvab-~ 

where the factor 1/4 was introduced for the sake of convenience. The 
variation 6g, B~.a b of the vector potential B.a b [caused by an infinitesimal 
SL(2,C) transformation, (1 + egi), of the dyadic local frame] is obtained 
from its law of transformation, 

B'~ = S - 'Bu S -  S-IS,~, (29) 

Here we obtain 

j~i = (--g)l/z ~ Bv, gi] -- gi, v)b a (30) 

Using now the identity 

we get 

Tr(A[B, C ] ) =  Tr([A, B]C) 

-p. - -  - -  O_ ,av  b a n  J~ ,_  ( _ g ) 1 / 2 ( [ ~ ,  B~]obg,bO o gi,~b ) (31) 
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But from the definition of  the gauge potential (Carmeli, 1982), 
A ~ a ; v  : B . a b ~ b  A (32), 

we obtain 

O'P'Vab;p ~-- [ B o, o'"~], b (33) 

Therefore, equation (31) becomes 

j ~  = --(--g ) l/E( ~ . b  gib~) ;~ = --[(--g)l/20"~],~ (34) 

where use is made of the notation 

0"~ v = or ~ v  ab g ib  a ( 35) 

The j ~  are three conserved vector densities constructed from metric ele- 
ments. 

4. AN APPLICATION TO THE TOLMAN METRIC 

In the last section we derived a conserved vector density, j ~ ,  associated 
with the $ L ( 2 , C )  internal symmetry of the gravitational field. Here we give 
its expression for the Tolman metric describing a spherically dust cloud 
(Tolman, 1934). 

The energy-momentum tensor of a dust cloud is given by 

T ~ = pu~u ~ (36) 

where p is the mass density and u ~ =  dx~'/ds is the 4-velocity. Tolman's 
solution of  Einstein's field equations in spherically symmetric comoving 
coordinates, (t, r, 0, ~), is given by (Tolman, 1934) 

R ,2 
d $  2 = d t  2 - -  dr 2-  R 2 d O  2 - R 2 sin 2 0 d ~  2 (37) 

l + f ( r )  

Here R is a function of t and r satisfying the condition 

R'=O--~R> 0 (38) 
Or 

whereas 

with 

R2 (aR~ 2 F(r) 
- \ ~ - /  = f ( r ) + - - ~ -  (39) 

0F(r)  = KpR2R, (40) 
Or 
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/~ expresses the radial velocity of  the dust particles, and f o r f ( r )  = 0 we have 

R2 = F(r ) /R  (41) 

that is, a parabolic motion. 
In order to find the expression of the new current for the Tolman metric 

we take Pauli matrices and the unit matrix divided by x/2 as the o-(,~) vector 
in the local Minkowskian frame, 

o.(O)_ I (k) ~'k (42) 

where I is the 2 •  unit matrix and Zk are Paulrs  matrices, 

i 

We also take the following basis for the interior space of the SL(2,C) group, 

~'k (43) g2 =,/2 
where k = 1, 2, 3. Then we obtain for the skew-symmetric tensor o'I ")(~), in 
the local Minkowskian frame, the following: 

(i-1 ~ o , _(~)(v) _ 1 t 0  0 0 1 1 0 0 - / ~  Or~/~)( v ) 
=,1~ o o 

0 - i  i 0 

a.(3.)(~)= 1 0 0 i 

- i  0 

0 0 

Now taking the matrix 

1 0 

0 [ R ' / ( 1  .q_f),/2]-I 
A(~) ~ = 

0 0 

0 0 ~ ~ t 
0 0 

R -1 0 

0 (R sin 0)-  

(44) 

(45) 

which fulfills the condition 

A(~)PA(v)~V (~)(~) = gP= (46) 

as the matrix of  the local coordinate transformation from the local Minkow- 
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skian frame to the comoving coordinates, we obtain for tr~ , 

1 

0 -(1 + f ) l / 2 / R '  0 0 
(1 + f ) ' / 2 / R '  0 0 0 

0 0 0 i /R  2 sin 

0 0 - i / R  2 sin 0 0 

(47) 

Therefore the conserved vector density is given by 

j ~  = - [(-g)l/2o-f~].~ = (x/2RR' sin 0, -x/2R/~ sin 0, 0, 0) (48) 

and the invariant conserved quantity, that is, the "charge" density measured 
in its rest frame, is 

[ 1 \ 1/2 __~ 
q = ~ - - ~ j ~ l j ~ l ~ )  = . .  (1 + f - / ~ 2 )  1/2 (49) 

The coordinate velocity of this "charge" is given by 

dr  = .1 Jo-1 /~ 
dt .o R'  (50) J~rl 

Hence its measured velocity with respect to the dust particle is 

dl dr 
V = 7  = (--glX) 1/2 dS = (1 +f)1/2 (51) 

and q takes the form 

q = [2(1 +f)]1/2 (1 -- I)2) 1/2 
R (52) 

5. C O N C L U D I N G  R E M A R K S  

We have seen how the SL(2,C)  group analysis of Einstein's equations 
leads to a conserved current. This is done, as is usually the case when one 
looks for conserved quantities, by applying Noether's theorem to the 
Lagrangian of  the physical system (which, in our case, was the Carmeli-Kaye 
Lagrangian). Finally, the conserved current was given explicitly for the 
Tolman metric. 
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